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Despite degree distributions give some insights about how heterogeneous a network is, they fail in giving a
unique quantitative characterization of network heterogeneity. This is particularly the case when several dif-
ferent distributions fit for the same network, when the number of data points is very scarce due to network size,
or when we have to compare two networks with completely different degree distributions. Here we propose a
unique characterization of network heterogeneity based on the difference of functions of node degrees for all
pairs of linked nodes. We show that this heterogeneity index can be expressed as a quadratic form of the
Laplacian matrix of the network, which allows a spectral representation of network heterogeneity. We give
bounds for this index, which is equal to zero for any regular network and equal to one only for star graphs.
Using it we study random networks showing that those generated by the Erdös-Rényi algorithm have zero
heterogeneity, and those generated by the preferential attachment method of Barabási and Albert display only
11% of the heterogeneity of a star graph. We finally study 52 real-world networks and we found that they
display a large variety of heterogeneities. We also show that a classification system based on degree distribu-
tions does not reflect the heterogeneity properties of real-world networks.
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I. INTRODUCTION

Complex networks are the structural skeleton of biologi-
cal, ecological, technological, and socioeconomic systems
�1,2�. They are formed by a set of nodes V representing the
entities of these systems and a set of links E representing
relationships between pairs of nodes �3,4�. Despite the dis-
parate nature of the systems represented by these networks
they share several universal topological properties, such as
small worldness �5�, scale freeness �6�, the existence of net-
work motifs �7�, and self-similarity characteristics �8�. A
great deal of attention has been paid to the scale-free prop-
erty shared by many real-world networks, which contrasts
with the regularity observed in random network models like
the one proposed by Erdös and Rényi �ER� �9�. A network is
said to have scale-free properties if it displays a power-law
degree distribution. That is, let p�k�=n�k� /n be the probabil-
ity of randomly selecting a node of degree k in a network,
where n�k� is the number of nodes having degree k in a
network of size �V�=n. The degree is the number of links
incident with the corresponding node. Then, a plot of p�k�
versus k represents the degree distribution for the network
�3,4�. A random ER network displays a Poisson degree dis-
tribution. However, many real-world networks have been ob-
served to display degree distributions in which the probabil-
ity p�k� decays as a power-law with the degree k : p�k�
�k−�.

In a regular network all nodes have exactly the same de-
gree k. Then, we can consider that networks with Poissonian
degree distributions are almost regular in the sense that most

of their nodes have degree about k̄, and few nodes have very
small or very high degree. However, in a scale-free network
the deviations from this regularity are very high. For in-
stance, the probability of finding nodes with very small de-
gree is very high, e.g., p�1��1, but very few nodes have
very large degree, e.g., for ��1, p�100��0.01. This situa-

tion resembles the one observed for the star graph in which
one node has degree n−1 and the rest of the nodes have
degree one. The star graph has average degree k̄�Sn�= 2�n−1�

n ,
which tends to 2 for very large number of nodes, i.e., k̄�Sn�
→2 as n→�. In both, star graphs and scale-free networks,
there are nodes with degree which are significantly larger
than the average degree of the network. This structural char-
acteristic reflects their “irregularity” or as it is known in the
network literature their “heterogeneity” �3,4�.

The problem of quantifying network heterogeneity arises
from the following situation. We know qualitatively that a
scale-free network is more heterogeneous than a Poissonian
network, and we also know how to compare the heterogene-
ity of two networks with power-law degree distributions.
However, there are many networks that do not display
power-law degree distributions, but any of the many fat-tail
distributions such as lognormal, Burr, Gamma, stretched ex-
ponential, etc. For instance, Stumpf and Ingram �10� ana-
lyzed the empirical data for several protein-protein interac-
tion networks �PPIs�. The PPIs of yeast, H. pylori and E. coli
were better fitted to a stretched exponential �Weibull distri-
bution�, the PPI of C. elegans displayed a power-law degree
distribution and that of D. melanogaster was fitted to a
gamma distribution. How can we rank them according to
their heterogeneity? The obvious answer is that we need an
index that uniquely accounts for the heterogeneity of any
network irrespective of its degree distribution.

In addition, the identification of which degree distribution
a network has, is not a trivial question. There are hundreds of
possible distributions to tests. Sometimes the differences in
the statistical fittings between several distributions are very
small. More difficult is the situation for relatively small net-
works where the number of data points is not enough for
having a good fit of any of the candidate distributions. Con-
sequently, having a heterogeneity index, which is minimized
for regular networks and maximized for starlike ones, is an
urgent necessity.
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II. EARLY NETWORK IRREGULARITY INDICES

In order to place our current research in context we de-
scribe here briefly some early attempts in the mathematical
literature to characterize the irregularity of a graph. The main
message of this section is that those early indices fail in
identifying starlike graphs as the most heterogeneous ones.
We start by describing an index based on the fact that the
irregularity of a network can be intuitively accounted for by
the difference of the node degree and the average degree.
This index was proposed by Bell in 1992 as the variance of
node degrees �11�,

VAR =
1

n
�
i=1

n

�ki − k̄�2. �1�

It has to be said, however, that this index was first intro-
duced as a measure of centralization in social networks by
Snijders �12�. Bell’s index is minimized for regular graphs as
expected from the fact that there is no heterogeneity at all in
their degrees. However, the maximum value is not obtained
for star graphs but depends on the number of nodes in the
network �see for instance p. 181 on Ref. �13��. That is, for
different number of nodes, the structures of two networks
displaying the maximum variances of their respective node
degrees are not necessarily similar. For details on the struc-
ture of the networks that maximize this index the reader is
referred to Ref. �12�.

In a historical context, the study of network irregularity
was first proposed in the seminal paper of Collatz and Si-
nogowitz in 1957 �14�, where they proposed the following
index of irregularity:

CS�G� = �1 − k̄ , �2�

where �1 is the principal eigenvalue of the adjacency matrix

and k̄ is the average degree. This index is also zero for regu-
lar graphs and Collatz and Sinogowitz �14� conjectured that
it is maximized by star graphs. Despite this is the case for
graphs with up to five nodes, it has been found that the CS
index is maximized for several families of graphs different
from star graphs �15�. Other approaches to quantify graph
irregularity were conceptualized by Chartrand, Erdös, and
Oellermann �16�. Albertson later recognized that these at-
tempts do not capture the irregularity of a graph in a single
parameter and proposed yet another index which is defined
as �17�

A�G� = �
�i,j��E

�ki − kj� . �3�

This idea is very close to the one we are going to develop
in the current work, which is that of basing the irregularity
index on a local measure of irregularity, e.g., the value �ki
−kj� for the link ei,j. However, here again this index fails in
quantifying correctly what we intuitively consider as a het-
erogeneous network. Despite this index is minimized for
regular graphs, it is not always maximized for star graphs. In
fact, this index is maximized for a particular class of com-
plicated graphs consisting of a clique, an independent set,
and some links joining a node in the clique to another one in

the independent set �18�. In closing, these irregularity indices
do not reflect our intuition that the starlike graphs are the
most heterogeneous ones. Consequently, we propose in the
next section an index which accounts for the heterogeneity of
a network having the minimum value for any regular graph
and being maximized only for stars.

III. NETWORK HETEROGENEITY INDEX

We start by defining a local index that accounts for the
irregularity of a single link. Let i , j�E, then we define the
irregularity of the i , j-link as

Iij = �f�ki� − f�kj��2, �4�

where f�ki� is a function of the node degree. For the sake of
mathematical convenience as we will see later we select here
f�ki�=ki

−1/2. This function takes the value of zero if the two
nodes have the same degree as it happens in regular networks
and it is maximized when the difference of both degrees
increases. For instance, let us consider a node of degree one
connected to a node of degree k, then as k→�, Ipq→1. In
addition, this function also accounts for the relative differ-
ence between the degrees of the two nodes. For instance, if
we have two links ep,q and er,s, such that kp=10, kq=2, kr
=100, and ks=92, the simple difference of node degrees does
not distinguish between the two links, i.e., �kp−kq�2= �kr
−ks�2=64. However, using f�ki�=ki

−1/2 we have, Ipq=0.153
and Irs=1.81·10−5, which indicates the relatively larger ir-
regularity of the first link compared to the second.

Then, the heterogeneity index that we propose here is
simply defined as the sum of the link irregularity for all links
in the network,

���G� = �
i,j�E

�ki
−1/2 − kj

−1/2�2. �5�

For regular networks this quantity is equal to zero. However,
as the difference in the degrees of adjacent nodes increases
the index also increases. The main advantage of defining this
index as the sum of square differences of a function of node
degrees is that we can express it in terms of a quadratic form
of the Laplacian matrix of the network �see Fact 8.15.1 on p.
550 of Ref. �19��. That is, let us define the Laplacian matrix
L of a network as L=K−A, where K is a diagonal matrix of
degrees and A is the adjacency matrix of the network, whose
Aij is one if, and only if, the corresponding nodes are joined
by a link or zero otherwise. The entries of L are then given
by

Lij = � ki for i = j ,

− 1 for i � j ,

0 otherwise,
	

where i� j stands for pairs of adjacent nodes.
The function z�x�=�i,j�E�xi−xj�2wij, where xi are values

assigned to the nodes, wij are weights for the links, and the
vector of xi entries has the constraint expressed by
�i,j�Exixjmij =1, where mij are the elements of a given sym-
metric matrix M, was previously used by Capocci et al. �20�
for detecting communities in large networks. Then, the sta-
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tionary points of z over all x were found as solutions of �D
−W�x=�Mx, where �D−W� is the weighted Laplacian ma-
trix and � are Lagrange multipliers. If we consider non-
weighted networks and take xi as the inverse square root of
the node degree then we have that the two apparently dis-
connected methods are equivalent, despite one is used for
detecting communities in complex networks and the other
for quantifying network heterogeneity.

Let �k−1/2
= �k1
−1/2 ,k2

−1/2 , . . . ,kn
−1/2� represent a column vec-

tor where ki is the degree of the node i. Then, it is easy to
realize that expression �5� can be stated as a quadratic form
of the Laplacian matrix,

���G� = �
i,j�E

�ki
−1/2 − kj

−1/2�2 =
1

2
�k−1/2�L�k−1/2


= n − 2 �
i,j�E

�kikj�−1/2. �6�

The second term in the right hand side of Eq. �6� is two times
the so-called Randić index 1R−1/2 �21� of the network, which
has been extensively studied in the mathematical literature
�22,23�. Then

���G� = n − 2 1R−1/2. �7�

The advantage of using f�ki�=ki
−1/2 is that expression �7�

depends only on the Randić index, for which the extremal
graphs are well known to coincide with the ones determining
the two extremes of irregularity in which we are interested
here. That is, for connected networks the Randić index is
bounded as follows �23�:

�n − 1 � 1R−1/2 �
n

2
, �8�

where the lower bound is attained for the star Sn and the
upper bound is attained for any regular network with n
nodes. Then, we can define the normalized heterogeneity in-
dex ��G� as

��G� =
n − 2 1R−1/2

n − 2�n − 1
, �9�

which is zero for any regular network and one for the star
graph, i.e., 0���G��1. Then, heterogeneous starlike net-
works are expected to have values of ��G� close to one. On
the other hand, more regular networks are expected to have
values close to zero. The normalized heterogeneity index can
be simply written as follows:

��G� =

�
i,j�E

�ki
−1/2 − kj

−1/2�2

n − 2�n − 1
. �10�

IV. SPECTRAL REPRESENTATION

Let 	� j be an orthonormal eigenvector of the Laplacian
matrix associated with the � j eigenvalue. We recall that the
Laplacian matrix is positive semidefinite, which for a con-
nected network means that: 0=�1��2� . . . ��n. Let

cos 
 j =
k−1/2 · 	� j

k−1/2
, �11�

be the angle between the orthonormal eigenvector 	� j and the
vector k−1/2 previously defined. The Euclidean norm k−1/2
can be written as k−1/2=��iki

−1=�0R−1. Then, using the
Euler theorem �see p. 457 on Ref. �24�� the Randić index can
be expressed as follows:

1R−1/2 =
1

2�n −
1

0R−1
�
j=2

n

� j cos2 
 j� . �12�

The term cos2 
 j represents the “contribution” of the normal-
ized degree to the corresponding eigenvector �or vice versa�.
For instance, cos2 
 j =0 means that the vector k−1/2 is per-
pendicular to the corresponding eigenvector, and no “dupli-
cated” information is contained in both vectors.

Now let us consider that the eigenvalue �1=0 represents
the origin of a Cartesian coordinate system. Let us represent
�� j�1 as a point in this system with coordinates given by
the magnitude of �� j�1 and the angle 
 j formed between
an orthonormal eigenvector associated to � j�1 and the
vector k−1/2. Then, the projection of �� j�1 on the x axis
is given by xj =�� j�1 cos 
 j, and the projection of
�� j�1 on the y axis is given by yj =�� j�1 sin 
 j.

This means that the heterogeneity index ��G� can be writ-
ten as

��G� =
0R−1

n − 2�n − 1
�
j=1

n

xj
2. �13�

This scenario is equivalent to considering that xj is the
adjacent cathetus of the triangle formed by the points �1
=0, �� j�1 and xj �see Fig. 1�. Then, ��G� can be interpreted
as the sum of the squares of adjacent catheti for all triangles
formed by the spectral projection of the Laplacian eigenval-
ues. Consequently, we can represent a network in a graphical
form by plotting xj vs yj for all values of j, where the het-
erogeneity is given by the sum of the squares of the projec-

�j

�j1/2

�1=0 x

y

xj

yj

FIG. 1. Illustration of the projection of �� j�1 in terms of its
magnitude and the angle 
 j formed between an orthonormal eigen-
vector associated to � j�1 and the vector k−1/2.
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tions of all these points on the abscissa. Obviously, all pro-
jections on y axis are positive but those on x axis can have
positive and negative signs. We will call these plots hetero-
geneity plots or simply H plots.

V. HETEROGENEITY IN RANDOM NETWORKS

We start our analysis by considering the Erdös-Rényi ran-
dom networks Gn,p generated by taking n nodes which are
linked by pairs according to a probability p, 0� p�1. Gn,p is
almost surely connected when p���n�log n /n, where ��n�
→� �25�. In this limit, the degrees of almost all nodes are
asymptotically equal �25�, which means that ��G��0.

In the case of scale-free networks we have studied empiri-
cally the networks generated with the preferential attachment
algorithm of Barabási and Albert �BA� �6�. By studying net-
works having 5000; 10 000, and 20 000 nodes and average
degrees ranging from 2 to 16 we found that the heterogeneity
of BA networks decays as a power law of the form ��BA�
�ak̄−�+b, where the parameters of the best fits obtained are
given in Table I together with the Pearson correlation coef-
ficient r.

Then, using the whole data set of points we have found
that the heterogeneity of BA networks can be estimated in
general by using the following expression obtained by using
nonlinear fit and displaying correlation coefficient of r
=0.9983,

��BA� � 0.2889k̄−0.9012 + 0.1109. �14�

This means that as the average degree increases the het-
erogeneity of BA networks tends to a constant value,
��BA��0.1109. Consequently, the BA model is a poor gen-
erator of network heterogeneity as it is able to produce only
about 11% of the heterogeneity of a starlike graph.

Another interesting characteristic of the heterogeneity of
random networks is given by their spectral representations. It
has been previously observed that the Laplacian eigenvalue
distributions share some similarities with the degree distribu-
tions of ER and BA networks. That is, the Laplacian eigen-
value of an ER has a Poisson-like distribution, while that of
a BA network has a power-law tail. In general, Zhan et al.
�26� have observed that for ER and BA networks the Laplac-
ian eigenvalue curves are very similar to their node degree
curves. This characteristic has an important impact in the
spectral representation of heterogeneity for ER and BA net-
works.

In Fig. 2 we illustrate the spectral heterogeneity H plots
for two ER and two BA networks with average degrees 8
�left� and 16 �right�. The values on the x axis are normalized
between −1 and 1, and those of the y axis between 0 and 2 to
have similar length in both scales. Both types of networks
display a characteristic plot, which we have observed for all
networks generated with these models. In the case of ER
networks where the Laplacian eigenvalues are distributed ac-
cording to a Poissonian law the plot of xj vs yj is character-
ized by a regular distribution of the points with an almost
squared shape. In the case of BA networks the plots have a
characteristic V shape, which is very narrow for values

around the point �0,0�. We have seen this shape in many
other networks with fat-tail degree distributions as we will
see in the next section. The exact analytical expressions for
these plots are not explored in the current work and we think
that its exploration deserves further attention.

VI. HETEROGENEITY IN REAL-WORLD NETWORKS

We study here three groups of networks loosely classified
according to their degree distributions into the classes of �i�
homogeneous, �ii� exponential, and �iii� fat-tailed networks.
The first group is formed by networks characterized by hav-
ing Poisson, Gaussian, or Uniform degree distributions. The
second group is formed by networks having exponential-like
distributions and the third group is formed by those having
power-law or other heavy-tailed distributions. There are 16,
18, and 18 networks in each group and they cover social,
ecological, technological, biological, and informational sys-
tems. Networks in group �i� include the food webs of Ben-
guela, Coachella Valley, Reef Small, Shelf, Skipwith pond,
St. Marks seagrass, and Stony stream; the social networks of
corporate elite in USA, inmates in prison, the friendship net-
work between physicians �Galesburg�, the friendship ties
among the employees in a small hi-tech computer firm which
sells, installs, and maintains computer systems �high-tech�,
and a sawmill communication network; three electronic se-
quential logic circuits parsed from the ISCAS89 benchmark
set, and a network of the Roget thesaurus. Networks in group
�ii� include the food webs of Bridge Brook, Canton Creek,
Chesapeake Bay, El Verde rainforest, Little Rock, St. Martin,
and Ythan estuary with and without parasites; the social net-
works of injecting drug users, a social network among col-
lege students in a course about leadership and the Zachary
karate club; the neural network of C. elegans; the western
USA power grid; a citation network consisting of papers
published in the Proceedings of Graph Drawing in the period
1994–2000 �GD�; the software network of XMMS; the USA
airport transportation network of 1997 and the PPI network
of D. melanogaster. The third group is formed by: the social
networks of persons with HIV infection during its early epi-
demic phase in Colorado Springs, a scientific collaboration
network in the field of computational geometry, and two
sexual networks, one consisting of heterosexual relations
only and the other including both heterosexual and homo-
sexual relationships; two versions of Internet at autonomous
system of 1997 and 1998; a semantic network of the Online
Dictionary of Library and Information Science �ODLIS�; the
food webs of Scotch Broom and Grassland; a citation net-
work in the field of “small-world;” the software networks of

TABLE I. Parameters for the power-law relations between het-
erogeneity and average degree in ER networks.

n a b � r

5000 0.2766 0.1031 0.8017 0.9982

10000 0.3001 0.1184 1.0181 0.9986

20000 0.2939 0.1096 0.8898 0.9998
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Abi, Digital, MySQL, and VTK; the transcription networks
of yeast, E. coli and urchins; the PPI networks of human and
yeast. Information about these networks as well as the appro-
priate references is given in �27,28�.

The first general characteristic that we observe for this
wide group of networks is that they are not very heteroge-
neous in the sense of being starlike. The average heteroge-
neity for these networks is �̄�G�=0.2180.129. In fact the
most heterogeneous network among the ones studied here is
the 1997 version of Internet at the autonomous system,
which has ��G�=0.548. This means that this network has
55% of the heterogeneity of a star graph of the same size.
The analysis of the three groups reveals the following statis-
tics. For group �i� �̄�G�=0.0880.052, group �ii� �̄�G�
=0.2180.081, group �iii� �̄�G�=0.3400.097. The largest
relative deviations are observed for the group we have called
“homogeneous” for which the values range from 0.04 to
0.24. In Fig. 3 we illustrate the values of heterogeneity for all
networks in the three groups. It can be seen that the three
groups are overlapped to each other indicating that a classi-
fication of networks into broad groups according to their
degree distributions does not reflect the real heterogeneity of
the networks.

A different way of grouping these networks is according
to their values of the heterogeneity index indistinctly of their
degree distributions. If we allow for two groups only, let say
homogeneous and “heterogeneous” networks we obtain two
clusters of networks which are centered at �̄1
=0.0920.038 and �̄2=0.3100.088, respectively. This
clustering is obtained by using the K-mean clustering tech-
nique. The first group is now formed by 22 networks, 73% of
which display Poisson, Gaussian or Uniform degree distribu-
tions and the rest displays exponential-like ones. Then, the
second group is formed by 30 networks, 60% of which dis-
play some kind of fat-tail degree distribution, 37% display
exponential-like and only one network displays a uniform-
like distribution. This second group can be further subdi-
vided into two subgroups accounting for moderately hetero-
geneous and highly heterogeneous networks. Both subgroups
are centered at �̄2�1�=0.2690.036 and �̄2�2�
=0.4440.072, respectively. The last subgroup includes
only seven of the 52 networks studied here, all of them hav-
ing fat-tail degree distribution but one that display an
exponential-like one. These highly heterogeneous networks
correspond to the USA airport network of 1997 �the one
displaying exponential degree distribution�, Internet versions
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FIG. 2. Illustration of the H plots for random networks obtained by the Erdös-Rényi �top� and Barabási-Albert �bottom� methods.
Networks on the left hand side have average degree equal to 8 and those on the right have average degree equal to 16. All networks have
1000 nodes.
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of 1997 and 1998 at autonomous systems, a food web of
Scotch Broom, the network of citations in the field of “small-
world,” and the transcription networks of yeast and E. coli.
In closing, a classification system based only on the degree
distribution does not reflect all characteristics of network
heterogeneity.

We have seen in the previous section that H plots reflect
in some way the characteristics of the degree distributions.
For instance, we have seen that networks with Poisson de-
gree distribution display a very regular distribution of the
points in the H plot, while scale-free networks display a
characteristic V-shape distribution of the points. In Fig. 4 we
illustrate the H plots of six real-world networks, with homo-
geneous, exponential, and fat-tail degree distributions. It can
be easily observed that H plots display some qualitative dif-
ferences for networks with different kinds of degree distribu-
tion. For instance, networks with homogeneous degree dis-
tributions display H plots in which all points are regularly
distributed inside a square. However, networks with expo-
nential degree distributions display an accumulation of the
points around the vertical line xj =0, which means that most
of the points are contained in a rectangle elongated along the
y axis. Finally, networks with fat-tail degree distributions
display the characteristic V-shape distributions of the points
in the H plot.

This classification of networks is very loose and an explo-
ration of the whole universe of complex network will display
many intermediate cases which are difficult to distinguish
qualitatively or even quantitatively. However, as an attempt
to quantify the “shape” of the H plots as another character-
istic feature of network heterogeneity we propose to use the
ratio of the lengths of both sides of the rectangle containing
most of the points in these plots. That is, let us consider a
rectangle with center at x̄, ȳ, where x̄ and ȳ are the averages
of xj and yj, respectively. The lengths of the two sides of this
rectangle containing most of the points in the H plot are
given by the standard deviations of these points respect to x̄
and ȳ, respectively,

lx = 2�1

n
�
j=1

n

�xj − x̄�2, �15�

ly = 2�1

n
�
j=1

n

�yj − ȳ�2. �16�

Then, let lmin=min�lx , ly� and lmax=max�lx , ly�. We define the
ratio between the two lengths as �= lmin / lmax, which is �
=1 if the points are distributed regularly on a square and
�→0 as the points concentrate around a line in the center of
the H plot.

The values of � for random networks with Poisson de-
gree distributions are close to one. This is also the case for
the two networks displaying homogeneous degree distribu-
tion in Fig. 4. For instance, �=0.935 for the network of
inmates in prison, and �=0.757 for the network of Roget
thesaurus. However, for networks with exponential degree
distributions these values are closer to zero. For instance, for
the Bridge Brook food web �=0.480 and for the network of
drug injecting users it is: �=0.383. Networks with fat-tail
degree distributions are better recognized by the V shape in
their H plots but they also tend to have values of the ratio
parameter around 0.5, e.g., �=0.507 for the transcription
networks of yeast and �=0.490 for Internet. However, these
values cannot be taken as a rule of thumb in order to match
H plots and degree distributions. In a similar way as for the
heterogeneity index here also there is large overlap between

the different classes. For instance, �̄=0.720.16, �̄

=0.610.13, and �̄=0.510.05 for networks with homo-
geneous, exponential and fat-tail degree distributions, re-
spectively, showing a large overlapping specially between
the first two groups.

VII. CONCLUSIONS

We have defined here an index that accounts for the het-
erogeneity of a network by using the sum of differences of
some function of the node degrees for linked pairs of nodes.
This index is then expressed as a quadratic form of the La-
placian matrix of the network, also allowing a spectral rep-
resentation on the basis of Laplacian eigenvalues and eigen-
vectors. For computational purposes it is easily computed
from any of the following equalities:

��G� =

�
i,j�E

�ki
−1/2 − kj

−1/2�2

n − 2�n − 1
=

1

2
�k−1/2�L�k−1/2


n − 2�n − 1

=

n − 2 �
i,j�E

�kikj�−1/2

n − 2�n − 1
. �17�

More general strategies for assessing the relevance of
node features in networks were proposed by Bianconi et al.
�29�. In that work, more general characteristics of nodes,
such as age, gender, nationality, abundance of proteins in the
cell, or geographical position of airports are considered. Here
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FIG. 3. Plot of the values of the heterogeneity index for 52
real-world networks grouped according to their general kind of de-
gree distribution. The first group corresponds to networks with ho-
mogeneous �Poisson, Gaussian, or uniform�, the second to those
having exponential-like, and the third to those having fat-tail degree
distribution.
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we concentrate on the heterogeneity that node degrees of
linked nodes introduce to a given network. However, it is
worth mentioning here that the possibility of extending this
theoretical scheme to other “centrality” measures or nonto-

pological characteristics of nodes like the ones previously
mentioned is straightforward.

Using the spectral formula for the index introduced here,
we have designed a way of representing the heterogeneity of
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a network by using a so-called H plot. These plots are build
by representing the square root of every Laplacian eigen-
value �� j�1 as a point in a system with coordinates given by
the magnitude of �� j�1 and the angle 
 j formed between an
orthonormal eigenvector associated to � j�1 and the vector
k−1/2. We have shown that H plots for networks with Poisson
degree distributions are characterized by a regular distribu-
tion of the points on an square with center at x̄, ȳ and side
lengths determined by the standard deviation of the points
from the mean. In case of networks with power-law degree
distributions this plot displays a characteristic V shape,
which distinguishes them clearly from the rest.

When we apply these heterogeneity tools to random and
real-world networks we extract the following general conclu-
sions. �i� As expected networks with Poisson degree distri-
butions like the ones generated by Erdös-Rényi approach are
very homogeneous, i.e., ��G�→0 for n→�. �ii� Surpris-
ingly, networks with power-law degree distributions gener-
ated by the Barabási-Albert preferential attachment method
display very poor heterogeneity, which tends to a constant
value ��G�→0.12 for large sizes and large average node
degrees. �iii� Real-world networks display a large variety of
heterogeneities ranging from values close to zero to values of

about 0.55. No one network from a pool of 52 studied here
displayed heterogeneity close to that of a star graph. The
largest value being found so far corresponds to the Internet,
which displays 55% of the heterogeneity of a star graph. �iv�
A classification system based on degree distributions does
not reflect the heterogeneity properties of real-world net-
works. �v� Attempts to use the heterogeneity indices defined
here to infer the degree distribution of networks is in general
not valid. Despite there is some match between heterogeneity
indices and degree distributions there are several pathologi-
cal cases which deviate from the general trends. However,
networks with fat-tail degree distributions appear to be very
well characterized by their heterogeneity index as well as by
the characteristic shape of their H plots. We hope the current
work helps researchers in different areas using network-
based strategies to gain insights about the degree of hetero-
geneity that their networks have as well as relating it with
other organizational and functional properties of networks.
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